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Abstract—We propose GHR-VQA, Graph-guided Hierarchical
Relational Reasoning for Video Question Answering (Video
QA), a novel framework that incorporates scene graphs to
capture intricate object relationships and interactions within
video sequences. Unlike traditional pixel-based methods, our
approach processes scene graphs with Graph Neural Networks
(GNNs), transforming structured video representations into rich,
context-aware embeddings for efficient processing. By leveraging
scene graphs, our model inherently enhances interpretability and
enables a more profound understanding of spatiotemporal dy-
namics, addressing limitations of existing Video QA models that
fail to fully interpret object interactions. Our model employs a
hierarchical network to reason across different abstraction levels,
enhancing both local and global understanding of video content.
We validate our approach on the Action Genome Question
Answering (AGQA) dataset, achieving significant performance
improvements in some question categories. Notably, our method
excels in object-relation reasoning, surpassing SOTA by 9.8%.

Index Terms—Video Question Answering, Scene Graphs,
Graph Neural Networks, Hierarchical Conditional Relation Net-
work, Action Genome Question Answering

I. INTRODUCTION

In the rapidly evolving digital era, the exponential growth
in video content has accentuated the need for sophisticated
tools capable of interpreting complex video data for various
applications. Video Question Answering (VideoQA) emerges
as a critical domain, providing a powerful framework for
enabling machines to reason about multimedia content and
unlocking a wide array of practical applications.

Despite continuous advancements, the field still faces signif-
icant challenges. A key difficulty lies in effectively capturing
the intricate interconnections between entities in a scene
and their evolution over time. The temporal dimension in-
creases complexity, with existing approaches often struggling
to capture and interpret dynamic object relationships within
videos [18]. A line of research [9] explores learning of
situation hyper-graphs for videos by extracting latent graph
representations from raw visual scenes. These intermediate
representations enable effective modeling of entities and their
relationships, facilitating a deeper understanding of the video’s
semantic content and enhancing question-answering perfor-
mance. Still, such modeling pipelines are highly resource-
intensive as they involve complex architectures and large-scale
models. Thus, training requires extensive annotated VideoQA
datasets which may not always be readily available.

This work introduces a novel modeling approach for
VideoQA that departs from learning latent situation graph
representations from video inputs. Instead, we leverage an off-
the-shelf Scene Graph Generation (SGG) model to directly
infer scene graphs from video frames. Using these explicit
representations of object interconnections within the scene, we
propose a lightweight framework for VideoQA that relies on
encoding frame-level scene graphs. Our approach eliminates
dependence on raw video frames, enabling question genera-
tion solely based on the extracted scene graphs. As highly
compact representations, scene graphs facilitate lightweight
yet effective modeling of temporal dynamics, enabling robust
performance with a minimal VideoQA model.

Our pipeline, GHR-VQA, begins with an efficient Scene
Graph Generation (SGG) step using the state-of-the-art method
from [23]. The generated scene graphs serve as input to
the Scene Graph Encoding Module (SGEM), which maps
them to latent representations through a shallow Graph Neural
Network (GNN). These graph representations, combined with
BERT-based question encodings, are then processed by a hier-
archical network to produce conditioned embeddings and the
final answer. We evaluated our method in the Action Genome
Question Answering Dataset [6] where we demonstrate robust
performance via a simple and lightweight modeling approach.

II. RELATED WORKS

A. Video Question Answering

Video Question Answering is an emerging task at the inter-
section of computer vision and natural language processing. It
requires models to reason about spatiotemporal information in
videos to answer questions correctly. Early approaches relied
on recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) to process temporal and spatial features, re-
spectively [14], [22]. More recent advances have incorporated
attention mechanisms and transformers, enabling long-range
dependency modeling and improved multimodal reasoning [4],
[24]. Many contemporary techniques approach this task with
Large Language Models (LLMs) and Large Visual-Language
Models (LVLMs) [10], [16]. These pre-trained models learn
from a massive amount of diverse data and can handle unseen
data effectively. Despite these advancements, existing methods
often struggle with capturing detailed object interactions and



Fig. 1. Our proposed architecture. The process begins with the input of a question and a corresponding video. Initially, we perform clip selection and pass
the segments through an SGG model to extract scene graphs that represent the visual elements and their interrelationships. These extracted scene graphs are
processed by a GNN, which generates meaningful embeddings. The embeddings are then fed into a hierarchical network, which integrates and contextualizes
the information across different levels of abstraction to generate a comprehensive understanding in relation to the query and finally answer the question.

higher-level reasoning, and often rely upon language biases,
motivating research into structured representations[8].

B. Graphs in Video QA

A promising direction of Video Question Answering is
using graph-based methods, where relationships between ob-
jects, actions and attributes are explicitly modeled. Graph-
based models offer advantages in interpretability and relational
reasoning but can be computationally expensive and reliant
on accurate object detection. Many methods leverage scene-
graphs, which represent objects, relationships and attributes as
structured triplets, since they capture semantic relationships
explicitly [2], [7], [21]. Khan et al. introduced situation
hypergraphs, training a decoder to implicitly identify graph
representations with actions and human-object relationships
[9]. There have also been attempts with 3D scene graphs,
capturing the objects within a dynamic spatiotemporal graph in
a 3D space [1]. Although significant progress has been made in
VideoQA through graph-based reasoning, learning structured
semantic situational representations from videos remains a
challenging problem. Our approach departs from these works
as it is a lightweight solution to VideoQA that operates on ex-
plicit scene graphs. It provides a transparent reasoning process
that can be visualized and analyzed, reducing computational
overhead thanks to processing graphs compared to raw video
frames. Using a hierarchical model we capture video content
in two granularities while minimizing reliance on language.

III. METHODOLOGY

A. Problem Formulation

This work follows a classification formulation for the
VideoQA task as in [6]. The objective is to predict the correct
answer a∗i ∈ A over a fixed set of K possible answers or
A = {a1, a2, ..., ak}, for an input video Vi ∈ V representing a
sequence of N frames Vi = [f1, f2, ..., fN ] and a question
qi ∈ Q. The goal becomes to learn a mapping function
F : V × Q → A, that predicts the correct answer or
a∗i = F(Vi, qi).

B. Proposed Approach

The mapping F is formed through a series of steps.
Frame Scene Graph Generation: In the core of GHR-VQA is
an initial frame scene graph generation step for each individual
frame of the input video. A scene graph Gi = (Ni, Ei) serves
as a structured representation of a scene captured within the
frame, where nodes Ni correspond to the entities or objects,
and the edges Ei represent semantic relationships between
these entities. Each node ni

j ∈ Ni includes the bounding box
coordinates of the entity and and the corresponding class label,
while edges eij,k ∈ Ei capture the type of semantic relationship
between two objects ni

j and ni
k. For example, given a frame

showing a person holding a cup, the scene graph would consist
of two nodes representing the ”person” and the ”cup” and an
undirected edge labeled ”holding” between them.

We start by processing each input frame fi individually
via a Scene Graph Generation Module or Gi = Sg(fi). For
Sg we use the off-the-shelve scene graph generator of [19],
consisting of a pre-trained detector backbone and the scene



Fig. 2. Example of 4 frames from the video sample OCGMQ with the
corresponding annotated scene graphs.

generation module from MOTIFS [23]. Sg is trained on the
Visual Genome dataset [11] containing 150 object categories
and 50 types of relationships / predicates.
Frame Scene Graph Encoding: Generated scene graphs
for video frames are then encoded into a latent scene rep-
resentation via a Scene Graph Encoding Module (SGEM)
modeled as a 2-layer Graph Neural Netwrok (GNN). Specif-
ically video frames are first aggregated into a hypergraph
G = {G1,G2, ...,GN} for the N video frames which is
processed by a Heterogeneous Edge Graph Attention Network
(HetEdgeGAT) to learn cross-entity semantic patterns. Our
SGEM follows [15] where each node ni

j in graph Gi is updated
as:

(ni
j)

′ = EdgeGATr(n
i
j) =

Θs,r · ni
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where Θ is used to denote learnable weight matrices for
the transformation of features of the node to update self (s),
neighboring nodes (u) and edge features (e) for graph Gi. H
corresponds to the number of attention heads and the ∥ denotes
the concatenation operator. Attention weights are obtained by:
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with a corresponding to a learnable vector.
We use cascaded layers in order to aggregate information in

the frame regarding all types of relationships. To get a compre-
hensive representation of the entire graph representation, we
combine the individual embeddings of the nodes into a single
vector. This aggregation is achieved through summing the node
embeddings for each node ni

j in the graph Gi are aggregated
using the following function: Gi = F

({
ni
j |j ∈ Ni

})
where

Gi is the final graph embedding and F is a sum function
F =

∑
j∈N ni

j .

Question Encoder In addition to graph processing, we map
the input question into a latent space by leveraging token-
wise sentence embeddings extracted from the penultimate
layer of a BERT model [3]. Specifically, we utilize the [CLS]
token embedding from the model’s output, for a holistic
representation of the entire sentence.
Hierarchical Network We propose a hierarchical method to
process graph embeddings at different levels of granularity to
finally classify the answer to the question. Drawing inspiration
from [12], we adapt the model to integrate scene graphs, thus
benefiting from the hierarchical and contextual processing of
the CRN units. The core of the Hierarchical Network consists
of multiple Conditional Relational Network (CRN) units ar-
ranged hierarchically. The CRN units at the lower level process
data at the clip level, gathering information from multiple
frames and handling more spatial information, whereas the
CRN units at the higher level operate at video level, modeling
longer temporal dependencies. The hierarchical design enables
the model to consider information in different contexts.

The top-level CRN layer outputs a video graph embedding,
used to classify the answer. This video-graph embedding is
aggregated with the question embeddings and is processed by
an answer decoder that generates the final output.

Each CRN unit takes as an input an array of n objects
X = (x1, ..., xn) and a conditioning feature c as a global
context. The objects belong in the same vector space Rd. CRN
computes a relation-based transformation yi conditioned on
feature c:

yi = F(xi, c) (3)

The input array X is first processed to model k-tuple
relations from t sub-sampled size-k subsets by sub-network
gk. The outputs are conditioned with the context ⌋ via sub-
network hk and finally aggregated by pk to obtain a result
vector rk which represents k-tuple conditional relations.

IV. EXPERIMENTS

A. Dataset

We evaluate our method on the Action Genome Question
Answering Dataset 2.0 [6]. Action Genome Question Answer-
ing (AGQA) is a benchmark for compositional spatio-temporal



Method obj-rel rel-action obj-action superlative sequencing exists duration activity Overall
Results on Dataset Subset A (our subset)

PSAC [13] 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 40.18
HME [5] 37.42 49.90 49.97 33.21 49.77 49.96 47.03 5.43 39.89
HCRN [12] 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 42.11
GHR-VQA (ours) 49.8 53.7 55.1 40.9 50.4 56.3 25.5 7.4 42.5

Results on Dataset Subset B (full AGQA dataset)
SHG-VQA [9] 46.42 60.67 64.63 38.83 62.17 56.06 48.15 10.12 49.20

TABLE I
COMPARISON OF SOTA METHODS ON DIFFERENT AGQA DATASET SUBSETS. DATASET SUBSET A CORRESPONDS TO OUR EXPERIMENTAL SUBSET,

WHILE DATASET SUBSET B REFERS TO THE COMPLETE AGQA DATASET.

reasoning. This benchmark contains 96.85M question-answer
pairs and a balanced subset of 2.27M question-answer pairs.

The dataset comprises approximately 9.6k videos, each with
a duration of 30 seconds, recorded at a frame rate of 30 frames
per second (fps). This translates to an average of around 900
frames per video. However, a notable aspect of AGQA is
the selective annotation process applied to these videos. The
dataset’s goal, extending Action Genome [8], is to decompose
actions, so its focus is on annotating only the video segments
where actions occur and objects are involved in it. Thus,
5 frames uniformly sampled across each action interval are
annotated. For each annotated frame, there is information for
the visible objects, their bounding boxes, their labels, and
relationships between them. So, despite the large number of
frames available per video, on average, only 35 frames per
video are annotated. This approach underscores the dataset’s
emphasis on specific, salient moments within the videos, rather
than an exhaustive frame-by-frame annotation with redundant
objects and relationships.

To accommodate various computational capacities and en-
able faster while detailed analysis, we designed a distinct
experimental framework. This framework was designed to
maintain the original dataset’s distribution through random
sampling, ensuring an accurate representation of the AGQA
dataset’s diversity and complexity. Our training subset, men-
tioned in Table I as Dataset Subset A, corresponds to 100K
train question-answer pairs and 20K test question-answer
pairs. We ensured no data leakage from the train to the test
set by keeping different videos in each set. To validate the
effectiveness of our experimental setup, we benchmarked it
against the baseline models provided by the AGQA creators.
Our evaluation confirms that these models achieve consistent
performance across both the full dataset and our subset,
serving as a grounding for subsequent analysis.

B. Implementation Details

In our experimental setup, we utilized PyTorch[17] as the
main framework for all model training and development.
For graph-related tasks, especially in Graph Neural Networks
(GNNs), we employed the Deep Graph Library (DGL) [20],
which is compatible with PyTorch and provides optimized
graph data structures and operations. All our experiments were
run using two machines, each equipped with four GPUs.

V. RESULTS & ANALYSIS

As we can see in Table I, our approach places second
in overall score among the state- of-the-art methods. Our
approach presents comparable results in almost all question
categories and even outperforms in some of them.

The best baseline on AGQA is HCRN for overall accuracy.
HCRN uses appearance features from ResNet101 as well
as motion features from ResNext101-Kinetics400 backbones.
Our model outperforms HCRN by almost 0.5%. However,
we observe the biggest improvement of 9.8% absolute points
on object-relation reasoning questions compared to the best
baseline in that category and 3.38% absolute points on the
best-performing model, SHG-VQA.

First of all, our approach achieves the highest accuracy
in ’obj-rel’ category, meaning our model can efficiently un-
derstand relationships between objects within the scene. Our
model also performs best in ’exists’ and ’superlative’ cate-
gories which means it can accurately identify the occurrence
of concepts and objects and their order. In the rest of the
categories -except for duration-, our model is ranked second.
However, we can infer that the model struggles with temporal
reasoning, particularly in the ’duration’ category, highlighting
challenges in capturing temporal dependencies.

Moving on to a qualitative assessment of our method, we
can notice in Figure 2 that the generated scene graphs can
capture the semantic information from each frame, and thus
our GNN learns to extract meaningful embeddings so that the
HCRN classifies the answer accordingly.

Model Accuracy (%)

GINE + MLP 32.8
EdgeGAT + MLP 34.6
HetEdgeGAT + MLP 33.9
HetEdgeGAT + HCRN (GHR-VQA) 42.5

TABLE II
ACCURACY COMPARISON OF DIFFERENT GNN ARCHITECTURES ALONG

WITH MLP OR HCRN.

Finally, the results presented in Table II provide a compara-
tive analysis of the accuracy achieved by different GNN archi-
tectures integrated with either an MLP or the HCRN module.
These experiments highlight the advantages of our proposed
approach in leveraging heterogeneous edge-based attention
mechanisms for Video QA. Among the evaluated architectures,



our final method, GHR-VQA, pairing the HetEdgeGAT model
with HCRN, achieves the highest accuracy of 42.5%, out-
performing other combinations. This significant improvement
demonstrates the complementary strengths of HetEdgeGAT
and HCRN; Our SGEM introduces heterogeneous edge-based
attention, effectively modeling diverse relationships between
objects and actions and enabling richer semantic understand-
ing and the hierarchical network further enhances reasoning
capabilities by capturing spatiotemporal dependencies across
different levels. Furthermore, the incremental gains observed
when comparing GNN architectures emphasize the importance
of modeling edge heterogeneity and employing advanced
attention strategies for improved graph-based reasoning. These
findings validate the robustness and scalability of our proposed
HetEdgeGAT + HCRN framework, showcasing its ability to
handle the complexity of visual reasoning tasks.

VI. DISCUSSION & CONCLUSION

Our scene-graph guided hierarchical model for Video QA
achieves notable improvements in object-relation reasoning,
outperforming existing methods in this category. However,
the computational cost of scene graph generation and GNN
processing can be prohibitive, especially for longer videos, and
the accuracy of object detection heavily impacts the quality of
the generated scene graphs.

Future work should focus on enhancing temporal reasoning
by integrating more advanced models for better sequencing.
Additionally, refining scene graph generation and improving
scalability through techniques like graph sparsification could
improve efficiency and performance.

In conclusion, our scene-graph-guided hierarchical model
represents a step forward in the Video QA field. By moving
beyond pixel-based approaches and incorporating relational
reasoning through scene graphs, our framework achieves
strong results on the AGQA dataset. While temporal reasoning
remains a challenge, our work lays the foundation for more
nuanced and scalable video understanding, with potential
applications in healthcare, autonomous vehicles and beyond.
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